Biomimetics (Dec 2022)

Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs

  • Seung-hee Jeong,
  • Jeong-hwan Kim,
  • Seung-ik Choi,
  • Jung-keun Park,
  • Tae-sam Kang

DOI
https://doi.org/10.3390/biomimetics8010006
Journal volume & issue
Vol. 8, no. 1
p. 6

Abstract

Read online

In this paper, we propose a platform for an insect-like flapping winged micro aerial vehicle with a resonant wing-driving system using extension springs (FMAVRES). The resonant wing-driving system is constructed using an extension spring instead of the conventional helical or torsion spring. The extension spring can be mounted more easily, compared with a torsion spring. Furthermore, the proposed resonant driving system has better endurance compared with systems with torsion springs. Using a prototype FMAVRES, it was found that torques generated for roll, pitch, and yaw control are linear to control input signals. Considering transient responses, each torque response as an actuator is modelled as a simple first-order system. Roll, pitch, and yaw control commands affect each other. They should be compensated in a closed loop controller design. Total weight of the prototype FMAVRES is 17.92 g while the lift force of it is 21.3 gf with 80% throttle input. Thus, it is expected that the new platform of FMAVRES could be used effectively to develop simple and robust flapping MAVs.

Keywords