Frontiers in Oncology (Feb 2022)

miR-22 and miR-205 Drive Tumor Aggressiveness of Mucoepidermoid Carcinomas of Salivary Glands

  • Erika Naakka,
  • Erika Naakka,
  • Mateus Camargo Barros-Filho,
  • Shady Adnan-Awad,
  • Shady Adnan-Awad,
  • Ahmed Al-Samadi,
  • Ahmed Al-Samadi,
  • Fábio Albuquerque Marchi,
  • Hellen Kuasne,
  • Katja Korelin,
  • Katja Korelin,
  • Ilida Suleymanova,
  • Ilida Suleymanova,
  • Amy Louise Brown,
  • Cristovam Scapulatempo-Neto,
  • Silvia Vanessa Lourenço,
  • Silvia Vanessa Lourenço,
  • Rogério Moraes Castilho,
  • Luiz Paulo Kowalski,
  • Luiz Paulo Kowalski,
  • Antti Mäkitie,
  • Antti Mäkitie,
  • Antti Mäkitie,
  • Vera Cavalcanti Araújo,
  • Ilmo Leivo,
  • Silvia Regina Rogatto,
  • Silvia Regina Rogatto,
  • Tuula Salo,
  • Tuula Salo,
  • Tuula Salo,
  • Tuula Salo,
  • Tuula Salo,
  • Fabricio Passador-Santos

DOI
https://doi.org/10.3389/fonc.2021.786150
Journal volume & issue
Vol. 11

Abstract

Read online

ObjectivesTo integrate mRNA and miRNA expression profiles of mucoepidermoid carcinomas (MECs) and normal salivary gland (NSGs) tissue samples and identify potential drivers.Material and MethodsGene and miRNA expression arrays were performed in 35 MECs and six NSGs.ResultsWe found 46 differentially expressed (DE) miRNAs and 3,162 DE mRNAs. Supervised hierarchical clustering analysis of the DE transcripts revealed two clusters in both miRNA and mRNA profiles, which distinguished MEC from NSG samples. The integrative miRNA-mRNA analysis revealed a network comprising 696 negatively correlated interactions (44 miRNAs and 444 mRNAs) involving cell signaling, cell cycle, and cancer-related pathways. Increased expression levels of miR-205-5p and miR-224-5p and decreased expression levels of miR-139-3p, miR-145-3p, miR-148a-3p, miR-186-5p, miR-338-3p, miR-363-3p, and miR-4324 were significantly related to worse overall survival in MEC patients. Two overexpressed miRNAs in MEC (miR-22 and miR-205) were selected for inhibition by the CRISPR-Cas9 method. Cell viability, migration, and invasion assays were performed using an intermediate grade MEC cell line. Knockout of miR-205 reduced cell viability and enhanced ZEB2 expression, while miR-22 knockout reduced cell migration and invasion and enhanced ESR1 expression. Our results indicate a distinct transcriptomic profile of MEC compared to NSG, and the integrative analysis highlighted miRNA-mRNA interactions involving cancer-related pathways, including PTEN and PI3K/AKT.ConclusionThe in vitro functional studies revealed that miR-22 and miR-205 deficiencies reduced the viability, migration, and invasion of the MEC cells suggesting they are potential oncogenic drivers in MEC.

Keywords