Remote Sensing (Jul 2022)

Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya’an–Linzhi Section of the Sichuan–Tibet Railway

  • Binni Xu,
  • Jingji Li,
  • Zhengyu Luo,
  • Jianhui Wu,
  • Yanguo Liu,
  • Hailong Yang,
  • Xiangjun Pei

DOI
https://doi.org/10.3390/rs14153584
Journal volume & issue
Vol. 14, no. 15
p. 3584

Abstract

Read online

Vegetation dynamics and their responses to climate change are of significant spatial and temporal heterogeneity. The Sichuan–Tibet Railway (STR) is a major construction project of the 14th Five-Year Plan for Economic and Social Development of the People’s Republic of China that is of great significance to promoting the social and economic development of Sichuan–Tibet areas. The planned railway line crosses areas with a complex geological condition and fragile ecological environment, where the regional vegetation dynamics are sensitive to climate change, topographic conditions and human activities. So, analyzing the vegetation variations in the complex vertical ecosystem and exploring their responses to hydrothermal factors are critical for providing technical support for the ecological program’s implementation along the route of the planned railway line. Based on MOD13Q1 Normalized Difference Vegetation Index (NDVI) data for the growing season (May to October) during 2001–2020, a Theil-Sen trend analysis, Mann–Kendall test, Hurst exponent analysis and partial correlation analysis were used to detect the vegetation dynamics, predict the vegetation sustainability, examine the relationship between vegetation change and hydrothermal factors, regionalize the driving forces for vegetation growth and explore the interannual variation pattern of driving factors. The growing season NDVI along the Ya’an–Linzhi section of the STR showed a marked rate of increase (0.0009/year) during the past 20 years, and the vegetation’s slight improvement areas accounted for the largest proportion (47.53%). Among the three hydrothermal parameters (temperature, precipitation and radiation), the correlation between vegetation growth and the temperature was the most significant, and the vegetation response to precipitation was the most immediate. The vegetation changes were affected by the combined impact of climatic and non-climatic factors, and the proportion of hydrothermal factors’ combined driving force slightly increased during the study period. Based on the Hurst exponent, the future vegetation sustainability of the area along the Ya’an–Linzhi section of the STR faces a risk of degradation, and more effective conservations should be implemented during the railway construction period to protect the regional ecological environment.

Keywords