Parasites & Vectors (Jul 2020)

Molecular detection and genetic characteristics of Babesia gibsoni in dogs in Shaanxi Province, China

  • Wen-Ping Guo,
  • Guang-Cheng Xie,
  • Dan Li,
  • Meng Su,
  • Rui Jian,
  • Luan-Ying Du

DOI
https://doi.org/10.1186/s13071-020-04232-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Several members of genus Babesia are important pathogens causing babesiosis in dogs. In China, at least five Babesia species have been described in dogs or ticks. This study sought to determine the prevalence and molecular characteristics of various Babesia spp. in dogs in cities in Shaanxi Province in China, including Xi’an and Hanzhong. Methods A total of 371 blood samples were collected from pet dogs presenting to veterinary clinics in the cities of Xi’an and Hanzhong in Shaanxi, China. Babesia spp. DNA was detected via amplification of partial 18S rRNA genes by semi-nested PCR. Almost full-length 18S rRNA, ITS, partial TRAP and complete cytb genes were recovered for analysis of the genetic characteristics and relationships with known isolates. Results A single species, Babesia gibsoni, was identified in dogs in Xi’an and Hanzhong. Consistently, B. gibsoni was also detected in 14 ticks collected from positive dogs. Sequence similarities and phylogenetic analysis suggested that the isolates identified herein showed a closer genetic relationship with isolates from East Asian countries rather than India, Bangladesh, or the USA. Sequence analysis based on tandem repeat analysis of the TRAP gene further revealed that specific haplotypes were circulating in both Xi’an and Hanzhong, with no specific regionality. In addition, 10.9% of all isolates with atovaquone (ATV)-resistance were identified because of M121I mutation in the deduced cytb protein. Conclusions This study revealed a high prevalence rate of Babesia infection. Babesia gibsoni was the only Babesia species identified in cases of canine babesiosis in the cities of Xi’an and Hanzhong cities in Shaanxi, China. In addition, the TRAP gene presented high genetic diversity across isolates. Such information is useful for elucidating the epidemiological characteristics of canine babesiosis, as well as the overall genetic diversity of Babesia spp. circulating in dog populations in Shaanxi Province.

Keywords