New Trends on Antineoplastic Therapy Research: Bullfrog (Rana catesbeiana Shaw) Oil Nanostructured Systems
Lucas Amaral-Machado,
Francisco H. Xavier-Júnior,
Renata Rutckeviski,
Andreza R. V. Morais,
Éverton N. Alencar,
Teresa R. F. Dantas,
Ana K. M. Cruz,
Julieta Genre,
Arnóbio A. da Silva-Junior,
Matheus F. F. Pedrosa,
Hugo A. O. Rocha,
Eryvaldo S. T. Egito
Affiliations
Lucas Amaral-Machado
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Francisco H. Xavier-Júnior
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Renata Rutckeviski
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Andreza R. V. Morais
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Éverton N. Alencar
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Teresa R. F. Dantas
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Ana K. M. Cruz
Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho-3000-Lagoa Nova, Natal 59064-741, Brazil
Julieta Genre
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Arnóbio A. da Silva-Junior
Pharmaceutical Technology & Biotechnology Laboratory (TecBioFar), Pharmacy Department, Federal University of Rio Grande do Norte, Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal–RN 59012-570, Brazil
Matheus F. F. Pedrosa
Pharmaceutical Technology & Biotechnology Laboratory (TecBioFar), Pharmacy Department, Federal University of Rio Grande do Norte, Av. General Gustavo de Cordeiro-SN-Petrópolis, Natal–RN 59012-570, Brazil
Hugo A. O. Rocha
Laboratory of Biotechnology of Natural Polymers (BIOPOL), Biochemistry Department, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho-3000-Lagoa Nova, Natal 59064-741, Brazil
Eryvaldo S. T. Egito
Disperse Systems Laboratory (LaSiD), Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Av. General Gustavo de Cordeiro-SN-Petropolis, Natal 59012-570, Brazil
Bullfrog oil is a natural product extracted from the Rana catesbeiana Shaw adipose tissue and used in folk medicine for the treatment of several diseases. The aim of this study was to evaluate the extraction process of bullfrog oil, to develop a suitable topical nanoemulsion and to evaluate its efficacy against melanoma cells. The oil samples were obtained by hot and organic solvent extraction processes and were characterized by titration techniques and gas chromatography mass spectrometry (GC-MS). The required hydrophile-lipophile balance and the pseudo-ternary phase diagram (PTPD) were assessed to determine the emulsification ability of the bullfrog oil. The anti-tumoral activity of the samples was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for normal fibroblast (3T3) and melanoma (B16F10) cell lines. Both extraction methods produced yielded around 60% and the oil was mainly composed of unsaturated compounds (around 60%). The bullfrog oil nanoemulsion obtained from PTPD presented a droplet size of about 390 nm and polydispersity = 0.05 and a zeta potential of about −25 mV. Both the bullfrog oil itself and its topical nanoemulsion did not show cytotoxicity in 3T3 linage. However, these systems showed growth inhibition in B16F10 cells. Finally, the bullfrog oil presented itself as a candidate for the development of pharmaceutical products free from cytotoxicity and effective for antineoplastic therapy.