Remote Sensing (Feb 2016)

Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets

  • Qiao Jiao,
  • Rui Li,
  • Fei Wang,
  • Xingmin Mu,
  • Pengfei Li,
  • Chunchun An

DOI
https://doi.org/10.3390/rs8020156
Journal volume & issue
Vol. 8, no. 2
p. 156

Abstract

Read online

A large-scale re-vegetation supported by the Grain for Green Project (GGP) has greatly changed local eco-hydrological systems, with an impact on soil moisture conditions for the Chinese Loess Plateau. It is important to know how, exactly, re-vegetation influences soil moisture conditions, which not only crucially constrain growth and distribution of vegetation, and hence, further re-vegetation, but also determine the degree of soil desiccation and, thus, erosion risk in the region. In this study, three eco-environmental factors, which are Soil Water Index (SWI), the Normalized Difference Vegetation Index (NDVI), and precipitation, were used to investigate the response of soil moisture in the one-meter layer of top soil to the re-vegetation during the GGP. SWI was estimated based on the backscatter coefficient produced by the European Remote Sensing Satellite (ERS-1/2) and Meteorological Operational satellite program (MetOp), while NDVI was derived from SPOT imageries. Two separate periods, which are 1998–2000 and 2008–2010, were selected to examine the spatiotemporal pattern of the chosen eco-environmental factors. It has been shown that the amount of precipitation in 1998–2000 was close to that of 2008–2010 (the difference being 13.10 mm). From 1998–2000 to 2008–2010, the average annual NDVI increased for 80.99%, while the SWI decreased for 72.64% of the area on the Loess Plateau. The average NDVI over the Loess Plateau increased rapidly by 17.76% after the 10-year GGP project. However, the average SWI decreased by 4.37% for two-thirds of the area. More specifically, 57.65% of the area on the Loess Plateau experienced an increased NDVI and decreased SWI, 23.34% of the area had an increased NDVI and SWI. NDVI and SWI decreased simultaneously for 14.99% of the area, and the decreased NDVI and increased SWI occurred at the same time for 4.02% of the area. These results indicate that re-vegetation, human activities, and climate change have impacts on soil moisture. However, re-vegetation, which consumes a large quantity of soil water, may be the major factor for soil moisture change in most areas of the Loess Plateau. It is, therefore, suggested that Soil Moisture Content (SMC) should be kept in mind when carrying out re-vegetation in China’s arid and semi-arid regions.

Keywords