Researches in Mathematics (Jul 2019)

The Bojanov-Naidenov problem for trigonometric polynomials and periodic splines

  • E.V. Asadova,
  • V.A. Kofanov

DOI
https://doi.org/10.15421/241901
Journal volume & issue
Vol. 27, no. 1
pp. 3 – 13

Abstract

Read online

For given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $r$ and minimal defect with knots at the points $k\pi / n$, $k \in \mathbb{Z}$, such that $\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$, $\delta \in (0, \pi / n]$, where $\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$ and $\varphi_{n, r}$ is the $(2\pi / n)$-periodic spline of Euler of order $r$. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k = 1, ..., r-1$, with $q \geqslant 1$.

Keywords