Remote Sensing (May 2020)

Quality-Based Combination of Multi-Source Precipitation Data

  • Anna Jurczyk,
  • Jan Szturc,
  • Irena Otop,
  • Katarzyna Ośródka,
  • Piotr Struzik

DOI
https://doi.org/10.3390/rs12111709
Journal volume & issue
Vol. 12, no. 11
p. 1709

Abstract

Read online

A quantitative precipitation estimate (QPE) provides basic information for the modelling of many kinds of hydro-meteorological processes, e.g., as input to rainfall-runoff models for flash flood forecasting. Weather radar observations are crucial in order to meet the requirements, because of their very high temporal and spatial resolution. Other sources of precipitation data, such as telemetric rain gauges and satellite observations, are also included in the QPE. All of the used data are characterized by different temporal and spatial error structures. Therefore, a combination of the data should be based on quality information quantitatively determined for each input to take advantage of a particular source of precipitation measurement. The presented work on multi-source QPE, being implemented as the RainGRS system, has been carried out in the Polish national meteorological and hydrological service for new nowcasting and hydrological platforms in Poland. For each of the three data sources, different quality algorithms have been designed: (i) rain gauge data is quality controlled and, on this basis, spatial interpolation and estimation of quality field is performed, (ii) radar data are quality controlled by RADVOL-QC software that corrects errors identified in the data and characterizes its final quality, (iii) NWC SAF (Satellite Application Facility on support to Nowcasting and Very Short Range Forecasting) products for both visible and infrared channels are combined and the relevant quality field is determined from empirical relationships that are based on analyses of the product performance. Subsequently, the quality-based QPE is generated with a 1-km spatial resolution every 10 minutes (corresponding to radar data). The basis for the combination is a conditional merging technique that is enhanced by involving detailed quality information that is assigned to individual input data. The validation of the RainGRS estimates was performed taking account of season and kind of precipitation.

Keywords