Remote Sensing (May 2024)

Sparse Reconstruction-Based Joint Signal Processing for MIMO-OFDM-IM Integrated Radar and Communication Systems

  • Yang Wang,
  • Yunhe Cao,
  • Tat-Soon Yeo,
  • Yuanhao Cheng,
  • Yulin Zhang

DOI
https://doi.org/10.3390/rs16101773
Journal volume & issue
Vol. 16, no. 10
p. 1773

Abstract

Read online

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) technology is widely used in integrated radar and communication systems (IRCSs). Moreover, index modulation (IM) is a reliable OFDM transmission scheme in the field of communication, which transmits information by arranging several distinguishable constellations. In this paper, we propose a sparse reconstruction-based joint signal processing scheme for integrated MIMO-OFDM-IM systems. Combining the advantages of MIMO and OFDM-IM technologies, the integrated MIMO-OFDM-IM signal design is realized through the reasonable allocation of bits and subcarriers, resulting in better intercarrier interference (ICI) resistance and a higher transmission efficiency. Taking advantage of the sparseness of OFDM-IM, an improved target parameter estimation method based on sparse signal reconstruction is explored to eliminate the influence of empty subcarriers on the matched filtering at the receiver side. In addition, an improved sequential Monte Carlo signal detection method is introduced to realize the efficient detection of communication signals. The simulation results show that the proposed integrated system is 5 dB lower in the peak sidelobe ratio (PSLR) and 1.5 ×105 lower in the number of complex multiplications than the latest MIMO-OFDM system and can achieve almost the same parameter estimation performance. With the same spectral efficiency, it has a lower bit error rate (BER) than existing methods.

Keywords