Frontiers in Immunology (Jul 2023)

Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis

  • Guadalupe Nibeyro,
  • Veronica Baronetto,
  • Juan I. Folco,
  • Pablo Pastore,
  • Maria Romina Girotti,
  • Laura Prato,
  • Gabriel Morón,
  • Gabriel Morón,
  • Hugo D. Luján,
  • Hugo D. Luján,
  • Elmer A. Fernández,
  • Elmer A. Fernández,
  • Elmer A. Fernández

DOI
https://doi.org/10.3389/fimmu.2023.1094236
Journal volume & issue
Vol. 14

Abstract

Read online

IntroductionIdentification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases.MethodsHere, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers.ResultsOur results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers.ConclusionRecommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors.

Keywords