PLoS ONE (Jan 2012)

Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine.

  • Richard Stebbings,
  • Michèle Février,
  • Bo Li,
  • Clarisse Lorin,
  • Marguerite Koutsoukos,
  • Edward Mee,
  • Nicola Rose,
  • Joanna Hall,
  • Mark Page,
  • Neil Almond,
  • Gerald Voss,
  • Frédéric Tangy

DOI
https://doi.org/10.1371/journal.pone.0050397
Journal volume & issue
Vol. 7, no. 11
p. e50397

Abstract

Read online

Live attenuated measles virus is one of the most efficient and safest vaccines available, making it an attractive candidate vector for a HIV/AIDS vaccine aimed at eliciting cell-mediated immune responses (CMI). Here we have characterized the potency of CMI responses generated in mice and non-human primates after intramuscular immunisation with a candidate recombinant measles vaccine carrying an HIV-1 insert encoding Clade B Gag, RT and Nef (MV1-F4). Eight Mauritian derived, MHC-typed cynomolgus macaques were immunised with 10(5) TCID(50) of MV1-F4, four of which were boosted 28 days later with the same vaccine. F4 and measles virus (MV)-specific cytokine producing T cell responses were detected in 6 and 7 out of 8 vaccinees, respectively. Vaccinees with either M6 or recombinant MHC haplotypes demonstrated the strongest cytokine responses to F4 peptides. Polyfunctional analysis revealed a pattern of TNFα and IL-2 responses by CD4+ T cells and TNFα and IFNγ responses by CD8+ T cells to F4 peptides. HIV-specific CD4+ and CD8+ T cells expressing cytokines waned in peripheral blood lymphocytes by day 84, but CD8+ T cell responses to F4 peptides could still be detected in lymphoid tissues more than 3 months after vaccination. Anti-F4 and anti-MV antibody responses were detected in 6 and 8 out of 8 vaccinees, respectively. Titres of anti-F4 and MV antibodies were boosted in vaccinees that received a second immunisation. MV1-F4 carrying HIV-1 Clade B inserts induces robust boostable immunity in non-human primates. These results support further exploration of the MV1-F4 vector modality in vaccination strategies that may limit HIV-1 infectivity.