Pharmaceutics (Apr 2025)

Development of Rapidly Dissolving Microneedles Integrated with Valsartan-Loaded Nanoliposomes for Transdermal Drug Delivery: In Vitro and Ex Vivo Evaluation

  • Ramsha Khalid,
  • Syed Mahmood,
  • Zarif Mohamed Sofian,
  • Zamri Chik,
  • Yi Ge

DOI
https://doi.org/10.3390/pharmaceutics17040483
Journal volume & issue
Vol. 17, no. 4
p. 483

Abstract

Read online

Background: Hypertension (HTN) is recognized as a major risk factor for cardiovascular disease, chronic kidney disease, and peripheral artery disease. Valsartan (VAL), an angiotensin receptor blocker drug for hypertension, has been limited due to its poor solubility and poor absorption from the GIT, which leads to low oral bioavailability. Objectives/Method: In the present research, firstly, VAL-loaded nanoliposomes were formulated and optimized using the Box–Behnken design (BBD). Optimized VAL-nanoliposomes were physically characterized and their fate was examined by scanning and transmission microscopy, DSC, FTIR, XRD, and ex vivo studies using rat skin. In vitro studies using human keratinocyte (HaCaT) cells showed a decrease in cell viability as the liposome concentration increased. Secondly, the formulation of VAL-loaded nanoliposomes was integrated into dissolvable microneedles (DMNs) to deliver the VAL transdermally, crossing the skin barrier for better systemic delivery. Results: The optimized nanoliposomes showed a vesicle size of 150.23 (0.47) nm, a ZP of −23.37 (0.50) mV, and an EE% of 94.72 (0.44)%. The DMNs were fabricated using a ratio of biodegradable polymers, sodium alginate (SA), and hydroxypropyl methylcellulose (HPMC). The resulting VAL-LP-DMNs exhibited sharp pyramidal microneedles, adequate mechanical properties, effective skin insertion capability, and rapid dissolution of the microneedles in rat skin. In the ex vivo analysis, the transdermal flux of VAL was significantly (5.36 (0.39) μg/cm2/h) improved by VAL-LP-DMNs. The enhancement ratio of the VAL-LP-DMNs was 1.85. In conclusion, liposomes combined with DMNs have shown high potential and bright prospects as carriers for the transdermal delivery of VAL. Conclusions: These DMNs can be explored in studies focused on in vivo evaluations to confirm their safety, pharmacokinetics profile, and pharmacodynamic efficacy.

Keywords