BMC Pulmonary Medicine (Mar 2021)
Nuclear factor-kappaB regulates the transcription of NADPH oxidase 1 in human alveolar epithelial cells
Abstract
Abstract Objective Acute lung injury (ALI) is characterized by inflammation and oxidative stress. Nuclear factor-kappaB (NF-κB) mediates the expression of various inflammation-related genes, including the NADPH oxidase family. This study aimed to identify the potential regulatory role of NF-κB on NADPH oxidases in tumor necrosis factor-α (TNF-α)-induced oxidative stress in human alveolar epithelial cells. Methods A549 cells were treated with TNF-α for 24 h to establish ALI cell models. RT-PCR, western blot, assessment of oxidative stress, Alibaba 2.1 online analysis, electrophoretic mobility shift assays and luciferase reporter analysis were employed to identify the potential regulatory role of NF-κB on NADPH oxidases in TNF-α-induced oxidative stress in human alveolar epithelial cells. Results The expression of NF-κB/p65 was notably upregulated in TNF-α-stimulated A549 cells. NF-κB knockdown by siRNA significantly inhibited the TNF-α-induced oxidative stress. Moreover, NF-κB/p65 siRNA could inhibit the activation of NOX1, NOX2 and NOX4 mRNA and protein expression in TNF-α-stimulated A549 cells. The next study demonstrated that NF-κB activated the transcription of NOX1 by binding to the -261 to -252 bp (NOX1/κB2, TAAAAATCCC) region of NOX1 promoter in TNF-α-stimulated A549 cells. Conclusion Our data demonstrated that NF-κB can aggravate TNF-α-induced ALI by regulating the oxidative stress response and the expression of NOX1, NOX2 and NOX4. Moreover, NF-κB could promote the NOX1 transcriptional activity via binding its promoter in TNF-α-stimulated A549 cells.
Keywords