Applied Sciences (Dec 2021)

A Simple Model of Ballistic Conduction in Multi-Lead Molecular Devices

  • Patrick W. Fowler,
  • Barry T. Pickup

DOI
https://doi.org/10.3390/app112411696
Journal volume & issue
Vol. 11, no. 24
p. 11696

Abstract

Read online

A fully analytical model is presented for ballistic conduction in a multi-lead device that is based on a π-conjugated carbon framework attached to a single source lead and several sink leads. This source-and-multiple-sink potential (SMSP) model is rooted in the Ernzerhof source-and-sink potential (SSP) approach and specifies transmission in terms of combinations of structural polynomials based on the molecular graph. The simplicity of the model allows insight into many-lead devices in terms of constituent two-lead devices, description of conduction in the multi-lead device in terms of structural polynomials, molecular orbital channels, and selection rules for active and inert leads and orbitals. In the wide-band limit, transmission can be expressed entirely in terms of characteristic polynomials of vertex-deleted graphs. As limiting cases of maximum connection, complete symmetric devices (CSD) and complete bipartite symmetric devices (CBSD) are defined and solved analytically. These devices have vanishing lead-lead interference effects. Illustrative calculations of transmission curves for model small-molecule systems are presented and selection rules are identified.

Keywords