Sensors (Jul 2021)

A Two-Step Phenotypic Parameter Measurement Strategy for Overlapped Grapes under Different Light Conditions

  • Yubin Miao,
  • Leilei Huang,
  • Shu Zhang

DOI
https://doi.org/10.3390/s21134532
Journal volume & issue
Vol. 21, no. 13
p. 4532

Abstract

Read online

Phenotypic characteristics of fruit particles, such as projection area, can reflect the growth status and physiological changes of grapes. However, complex backgrounds and overlaps always constrain accurate grape border recognition and detection of fruit particles. Therefore, this paper proposes a two-step phenotypic parameter measurement to calculate areas of overlapped grape particles. These two steps contain particle edge detection and contour fitting. For particle edge detection, an improved HED network is introduced. It makes full use of outputs of each convolutional layer, introduces Dice coefficients to original weighted cross-entropy loss function, and applies image pyramids to achieve multi-scale image edge detection. For contour fitting, an iterative least squares ellipse fitting and region growth algorithm is proposed to calculate the area of grapes. Experiments showed that in the edge detection step, compared with current prevalent methods including Canny, HED, and DeepEdge, the improved HED was able to extract the edges of detected fruit particles more clearly, accurately, and efficiently. It could also detect overlapping grape contours more completely. In the shape-fitting step, our method achieved an average error of 1.5% in grape area estimation. Therefore, this study provides convenient means and measures for extraction of grape phenotype characteristics and the grape growth law.

Keywords