Frontiers in Public Health (May 2024)
Cost-effectiveness analysis of bevacizumab combined with lomustine in the treatment of progressive glioblastoma using a Markov model simulation analysis
Abstract
BackgroundProgressive glioblastoma (GBM) is a malignancy with extremely poor prognosis. Chemotherapy is one of the approved systemic treatment modalities. The aim of this study is to assess the cost-effectiveness of using bevacizumab (BEV) in combination with lomustine (LOM) regimen for the treatment of progressive glioblastoma in China.MethodsThe estimation results are derived from a multicenter randomized phase III trial, which demonstrated improved survival in GBM patients receiving BEV+LOM combination therapy. To calculate the incremental cost-effectiveness ratio (ICER) from the perspective of Chinese society, a Markov model was established. Univariate deterministic analysis and probabilistic sensitivity analysis were employed to address the uncertainties within the model.ResultsCompared to LOM monotherapy, the total treatment cost for BEV+LOM combination therapy increased from $2,646.70 to $23,650.98. The health-adjusted life years (QALYs) for BEV+LOM combination therapy increased from 0.26 QALYs to 0.51 QALYs, representing an increment of 0.25 QALYs. The incremental cost-effectiveness ratio (ICER) was $84,071.12. The cost-effectiveness curve indicates that within the willingness-to-pay (WTP) range of $35,906 per QALY, BEV+LOM combination therapy is not a cost-effective treatment option for unresectable malignant pleural mesothelioma patients.ConclusionsTaken as a whole, the findings of this study suggest that, from the perspective of payers in China, BEV+LOM combination therapy as a first-line treatment for GBM is not a cost-effective option. However, considering the survival advantages this regimen may offer for this rare disease, it may still be one of the clinical treatment options for this patient population.
Keywords