Mathematical Modelling and Analysis (Jun 2005)

Determination of the stability boundaries for the hamiltonian systems with periodic coefficients

  • A. N. Prokopenya

DOI
https://doi.org/10.3846/13926292.2005.9637281
Journal volume & issue
Vol. 10, no. 2

Abstract

Read online

We consider the hamiltonian system of linear differential equations with periodic coefficients. Using the infinite determinant method based on the existence of periodic solutions on the boundaries between the domains of stability and instability in the parameter space we have developed the algorithm for analytical computation of the stability boundaries. The algorithm has been realized for the second and the fourth order hamiltonian systems arising in the restricted many‐body problems. The stability boundaries have been found in the form of powers series, accurate to the sixth order in a small parameter. All the computations are done with the computer algebra system Mathematica. Nagrinejama Hamiltono tiesiniu diferencialiniu lygčiu su periodiniais koeficientais sistema. Remiantis tuo, kad parametru erdveje stabilumo ir nestabilumo sritis skiriančioje sienoje egzistuoja periodinis sprendinys, sukurtas analitinis minetos sienos apskaičiavimo algoritmas. Algoritmas realizuotas antros ir ketvirtos eiles Hamiltono sistemoms, kylančioms nagrinejant apribotu keleto kūnu uždavinius. Stabilumo srities siena randama laipsnines eilutes pavidalu mažojo parametro šešto laipsnio tikslumu. Skaičiavimai atlikti skaičiavimo algebros paketo Mathematica pagalba. First Published Online: 14 Oct 2010

Keywords