BMJ Open (Feb 2021)
Can routine blood tests be modelled to detect advanced liver disease in the community: model derivation and validation using UK primary and secondary care data
Abstract
Objectives Most patients are unaware they have liver cirrhosis until they present with a decompensating event. We therefore aimed to develop and validate an algorithm to predict advanced liver disease (AdvLD) using data widely available in primary care.Design, setting and participants Logistic regression was performed on routinely collected blood result data from the University Hospital Southampton (UHS) information systems for 16 967 individuals who underwent an upper gastrointestinal endoscopy (2005–2016). Data were used to create a model aimed at detecting AdvLD: ‘CIRRhosis Using Standard tests’ (CIRRUS). Prediction of a first serious liver event (SLE) was then validated in two cohorts of 394 253 (UHS: primary and secondary care) and 183 045 individuals (Care and Health Information Exchange (CHIE): primary care).Primary outcome measures Model creation dataset: cirrhosis or portal hypertension. Validation datasets: SLE (gastro-oesophageal varices, liver-related ascites or cirrhosis).Results In the model creation dataset, 931 SLEs were recorded (5.5%). CIRRUS detected cirrhosis or portal hypertension with an area under the curve (AUC) of 0.90 (95% CI 0.88 to 0.92). Overall, 3044 (0.8%) and 1170 (0.6%) SLEs were recorded in the UHS and CHIE validation cohorts, respectively. In the UHS cohort, CIRRUS predicted a first SLE within 5 years with an AUC of 0.90 (0.89 to 0.91) continuous, 0.88 (0.87 to 0.89) categorised (crimson, red, amber, green grades); and AUC 0.84 (0.82 to 0.86) and 0.83 (0.81 to 0.85) for the CHIE cohort. In patients with a specified liver risk factor (alcohol, diabetes, viral hepatitis), a crimson/red cut-off predicted a first SLE with a sensitivity of 72%/59%, specificity 87%/93%, positive predictive value 26%/18% and negative predictive value 98%/99% for the UHS/CHIE validation cohorts, respectively.Conclusion Identification of individuals at risk of AdvLD within primary care using routinely available data may provide an opportunity for earlier intervention and prevention of liver-related morbidity and mortality.