Viruses (Mar 2019)

Gram-Positive Bacteria-Like DNA Binding Machineries Involved in Replication Initiation and Termination Mechanisms of Mimivirus

  • Motohiro Akashi,
  • Masaharu Takemura

DOI
https://doi.org/10.3390/v11030267
Journal volume & issue
Vol. 11, no. 3
p. 267

Abstract

Read online

The detailed mechanisms of replication initiation, termination and segregation events were not yet known in Acanthamoeba polyphaga mimivirus (APMV). Here, we show detailed bioinformatics-based analyses of chromosomal replication in APMV from initiation to termination mediated by proteins bound to specific DNA sequences. Using GC/AT skew and coding sequence skew analysis, we estimated that the replication origin is located at 382 kb in the APMV genome. We performed homology-modeling analysis of the gamma domain of APMV-FtsK (DNA translocase coordinating chromosome segregation) related to FtsK-orienting polar sequences (KOPS) binding, suggesting that there was an insertion in the gamma domain which maintains the structure of the DNA binding motif. Furthermore, UvrD/Rep-like helicase in APMV was homologous to Bacillus subtilis AddA, while the chi-like quartet sequence 5′-CCGC-3′ was frequently found in the estimated ori region, suggesting that chromosomal replication of APMV is initiated via chi-like sequence recognition by UvrD/Rep-like helicase. Therefore, the replication initiation, termination and segregation of APMV are presumably mediated by DNA repair machineries derived from gram-positive bacteria. Moreover, the other frequently observed quartet sequence 5′-CGGC-3′ in the ori region was homologous to the mitochondrial signal sequence of replication initiation, while the comparison of quartet sequence composition in APMV/Rickettsia-genome showed significantly similar values, suggesting that APMV also conserves the mitochondrial replication system acquired from an ancestral genome of mitochondria during eukaryogenesis.

Keywords