Advances in Mechanical Engineering (Sep 2021)

Experimental study of the mechanical properties of steel fiber stainless-steel reinforced concrete (SFSRC) beams under low velocity impact conditions

  • Xiwu Zhou,
  • Wen Zhang,
  • Xiangyu Wang

DOI
https://doi.org/10.1177/16878140211044933
Journal volume & issue
Vol. 13

Abstract

Read online

In the present study, based on the previous impact resistance test study results regarding stainless steel reinforced concrete beams, six steel fiber stainless-steel reinforced concrete (SFSRC) beams were subjected to drop-hammer impact tests using an advanced ultra-high heavy multi-function drop hammer impact test system. The goal was to further investigate the mechanical properties of SFSRC beams under impact load conditions. The influencing effects of the steel fiber content and impact velocity levels on the impact resistance mechanical properties of SFSRC beams were analyzed. A digital image correlation method (DIC) was used to analyze the full-field strain and displacement values of the specimens. The results revealed that the steel fibers had significantly enhanced the overall energy dissipation and crack resistance capacities of the specimens, and also improved the brittleness of the stainless steel reinforced concrete beams. In addition, the addition of steel fibers effectively inhibited the local damages of the beam-hammer contact areas. In this study’s experiments, the impact resistance of the beams was observed to be the highest when the fiber content was 2.0%. The internal force formula of the local response stage of the beams showed that the shearing effects had significant impacts on the overall failure modes of the specimens. It was found that with the increases in impact velocity, the failure mode of the SFSRC beams transitioned from bending failure to shear failure, and then to a punching shear failure mode. The DIC results indicated that the addition of steel fiber improved the bonding performances between the concrete matrixes, along with inhibiting the crack development rates through the bond force between the fiber and the concrete.