Heliyon (Jun 2024)

Antioxidant, antidiabetic, and anti-inflammatory activities of flavonoid-rich fractions of Solanum anguivi Lam. fruit: In vitro and ex vivo studies

  • Adebola Busola Ojo,
  • Issac Gbadura Adanlawo

Journal volume & issue
Vol. 10, no. 11
p. e31895

Abstract

Read online

Diabetes mellitus is a major, rapidly growing endocrine disorder in most countries. The high cost and side effects of conventional drugs for the management of this disease have shifted attention to medicinal plants. Solanum anguivi (S. anguivi) fruits has been reported to be a very good and rich source of polyphenols such as flavonoids, that can be exploited. Flavonoids are plant secondary metabolites widely found in vegetables, fruits and seeds and are known to be of medicinal significance in different range of diseases like diabetes. This study involved in vitro and ex vivo assays on the antioxidant, anti-inflammatory, and antidiabetic properties of flavonoid-rich fractions of S. anguivi fruits. Healthy male Wistar rats (n = 5) weighing 150–180 g were used for ex vivo antioxidant and antidiabetic studies, their liver was exercised for the experiment. The percentage yields of the three flavonoid-rich fractions (Fr. A, B, and C) of S. anguivi fruits obtained from the column chromatographic technique were 15.53 ± 0.75, 11.53 ± 0.80, and 10.17 ± 0.49 mg/g quercetin equivalents. The three fractions (A, B, and C) of S. anguivi fruits significantly scavenged both 2,2-diphenyl-1-picrylhydrazyl (DPPH) with fraction A having the lowest IC50 value (26.14 ± 1.06 μg/ml) compared with fraction B (37.78 ± 5.12 μg/ml) and fraction C (38.24 ± 2.40 μg/ml) when compared with ascorbic acid with the least IC50 value (15.27 ± 0.34 μg/ml). While fraction A (19.61 ± 1.19 μg/ml) scavenged nitric oxide (NO) radicals better than fraction B (22.97 ± 0.55 μg/ml) and fraction C (49.95 ± 6.18 μg/ml). Although ascorbic acid had better scavenging ability than the three fractions (17.23 ± 0.16 μg/ml). The flavonoid-rich fraction A shows better result in inhibiting α-glucosidase with IC50 value of 16.24 μg/ml compared to fraction B (128.04 μg/ml) and fraction C (143.16 μg/ml). For α-amylase, flavonoid-rich fraction A had an IC50 of 31.50 μg/ml compared to B (84.32 μg/ml) and C (145.40 μg/ml). The various controls also showed promising results with acarbose having IC50 of 3.93 μg/mL and 15.66 μg/mL respectively for α-glucosidase and α-amylase. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, following treatment with the three flavonoid fractions of S. anguivi fruits helped to restore these parameters to near-normal levels, by significantly increasing the potential of GSH, SOD, CAT and reducing the levels of MDA which signifies that flavonoid-rich fractions of S. anguivi have great potential to address complications arising from oxidative stress. In addition, the three flavonoid-rich fractions A, B, and C of S. anguivi fruits exhibited ex vivo anti-inflammatory properties via reduced nitric oxide levels in iron-induced oxidative damage. Data obtained from this study shows that the flavonoid-rich fraction of S. anguivi possess anti-diabetic property via inhibition of α-glucosidase and α-amylase and antioxidant property via free radical scavenging. Also, comparing all the fractions, flavonoid-rich fraction A appears to be more potent compared to the fractions B and C. Further research will be needed in isolating and as well applying the fractions in real life situations in the management of diabetes.

Keywords