Catalysts (Dec 2019)

An Efficient Strategy for the Fabrication of CuS as a Highly Excellent and Recyclable Photocatalyst for the Degradation of Organic Dyes

  • Na Qin,
  • Wutao Wei,
  • Chao Huang,
  • Liwei Mi

DOI
https://doi.org/10.3390/catal10010040
Journal volume & issue
Vol. 10, no. 1
p. 40

Abstract

Read online

An effective and practical in situ sulfuration approach has been developed in this work, for the fabrication of CuS with a 3D hierarchical network structure under mild preparation conditions. The prepared CuS consists of a primary structure of the multi-structure interchange copper foam precursor, and a secondary structure of nanoplates. The structural characteristics, morphologies, and photocatalytic performances of the prepared photocatalyst were investigated systematically. To evaluate the photocatalytic performance of the prepared CuS samples, we investigated the degradation of MB (methylene blue), RhB (Rhodamine B), and MB/RhB dye solutions over the samples under the irradiation of simulated solar light. Specifically, the degradation of RhB rapidly reached ≈100.0% after simulated solar light irradiation for 25 min, which is higher than those of P25 (83.0%) and bulk CuS (54.8%). For the mixed systems of MB/RhB, both the degradations of MB and RhB reached up to ≈99.0% after simulated solar light irradiation for 25 min. The superior photocatalytic performances of the prepared samples are attributed to the synergistic effects of high optical absorption, large specific surface area, and abundant active sites. The prepared catalysts can retain the photocatalytic activities during the entire reaction process without significant loss after four catalytic cycles, which reveals that the CuS with a stable 3D hierarchical network structure has a promising prospect as an ideal recyclable catalyst.

Keywords