Nanomaterials (Aug 2020)

Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid

  • Pei-Sung Hung,
  • Guang-Ren Wang,
  • Wei-An Chung,
  • Tze-Ting Chiang,
  • Pu-Wei Wu

DOI
https://doi.org/10.3390/nano10091722
Journal volume & issue
Vol. 10, no. 9
p. 1722

Abstract

Read online

We demonstrate a water-based synthetic route to fabricate composite inverse opals for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Our process involves the conformal deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) and PEDOT/Au on the skeletons of Ni inverse opals via cyclic voltammetric scans (CV) to initiate the electropolymerization of 3,4-ethylenedioxythiophene (EDOT) monomers. The resulting samples, Ni@PEDOT, and Ni@PEDOT/Au inverse opals, exhibit a three-dimensional ordered macroporous platform with a large surface area and interconnected pore channels, desirable attributes for facile mass transfer and strong reaction for analytes. Structural characterization and material/chemical analysis including scanning electron microscope, X-ray photoelectron spectroscopy, and Raman spectroscopy are carried out. The sensing performances of Ni@PEDOT and Ni@PEDOT/Au inverse opals are explored by conducting CV scans with various concentrations of AA, DA, and UA. By leveraging the structural advantages of inverse opals and the selection of PEDOT/Au composite, the Ni@PEDOT/Au inverse opals reveal improved sensing performances over those of conventional PEDOT-based nanostructured sensors.

Keywords