The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
Atsushi Ishimoto
The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, Japan
Akinobu Yamaguchi
Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo, Japan
Kinga Zór
The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
Anja Boisen
The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
En-Te Hwu
The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BioInnovation Institute Foundation, Copenhagen N 2800, Denmark
We present an unconventional approach to a common Lab-on-a-Disc (LoD) that combines a quadcopter propulsion system, a miniaturized 2.4 GHz Wi-Fi spy camera, 9.74 Watt Qi wireless power, and an Arduino into an open-source, miniaturized All-in-one powered lab-on-disc platform (APELLA). The quadcopter propulsion generates thrust to rotate (from 0.1 to 24.5 Hz) or shake the LoD device, while the spy camera enables a real-time (30 frames per second) and high definition (1280 × 720 pixels) visualization of microfluidic channels without requiring a bulky and heavy stroboscopic imaging setup. A mobile device can communicate with an Arduino microcontroller inside the APELLA through a Bluetooth interface for closed loop and sequential frequency control. In a proof-of-concept study, the APELLA achieved comparable mixing efficiency to a traditional spin stand and can capture rapid microfluidic events at low rotational frequencies (<5Hz). The APELLA is low-cost (c.a. 100 Euro), compact (15.6 × 15.6 × 10 cm3), lightweight (0.59 kg), portable (powered by a 5 V USB power bank), and energy efficient (uses < 6% power of the conventional system), making it ideal for field deployment, education, resource-limited labs.