Balkan Journal of Medical Genetics (Aug 2020)

Effect of exogenous transcription factors integration sites on safety and pluripotency of induced pluripotent stem cells

  • Yin S,
  • Li W,
  • Yang G,
  • Cheng Y,
  • Yi Q,
  • Fan S,
  • Ma Q,
  • Zeng F

DOI
https://doi.org/10.2478/bjmg-2020-0003
Journal volume & issue
Vol. 23, no. 1
pp. 5 – 13

Abstract

Read online

Induced pluripotent stem cells (iPSCs), generated from somatic cells, not only possess similar characteristics with embryonic stem cells (ESCs), but also present more advantages than ESCs in medical applications. The classical induction method that utilizes the integration of exogenous genes into chromosomes may raise the potential risk of the safety of iPSCs. To investigate the potential correlation between the integration sites of exogenous transcription factors (TFs) and iPSCs’ pluripotency and safety, the integration of exogenous genes in three iPSC lines, which met the golden standard of murine developmental assay (tetraploid complementation), were analyzed. Twenty-two integration sites of exogenous TFs were identified by nested inverse polymerase chain reaction (iPCR) and 39 flanking genes’ functions were analyzed by gene ontology (GO). In the 22 integrated sites, 17 (77.3%) were located in the intergenic regions and the remainder were located in introns far from the transcription start sites. Microarray analysis of the flanking genes in these cells showed that there was no distinct difference in expression levels between the iPSCs, ESCs and mouse embryonic fibroblast (MEF), suggesting that the integration of exogenous TFs has no significant influence on the expression of flanking genes. Gene ontology analysis showed that although most of the flanking genes were housekeeping genes, which were necessary for basic life activity, none of these 39 flanking genes have correlation with tumorigenesis or embryogenesis, suggesting that the integration sites hold low risk of tumorigenesis.

Keywords