Mathematics (May 2021)
Navier–Stokes Cauchy Problem with |<i>v</i><sub>0</sub>(<i>x</i>)|<sup>2</sup> Lying in the Kato Class <i>K</i><sub>3</sub>
Abstract
We investigate the 3D Navier–Stokes Cauchy problem. We assume the initial datum v0 is weakly divergence free, supR3∫R3|v0(y)|2|x−y|dy∞ and |v0(y)|2∈K3, where K3 denotes the Kato class. The existence is local for arbitrary data and global if supR3∫R3|v0(y)|2|x−y|dy is small. Regularity and uniqueness also hold.
Keywords