Plants (Jan 2021)

Identification of Tomato Ve1 Homologous Proteins in Flax and Assessment for Race-Specific Resistance in Two Fiber FlaxCultivars against <i>Verticillium dahliae</i> Race 1

  • Adrien Blum,
  • Lisa Castel,
  • Isabelle Trinsoutrot-Gattin,
  • Azeddine Driouich,
  • Karine Laval

DOI
https://doi.org/10.3390/plants10010162
Journal volume & issue
Vol. 10, no. 1
p. 162

Abstract

Read online

In the last decade, the soil borne fungal pathogen Verticillium dahliae has had an increasingly strong effect on fiber flax (Linum usitatissimum L.), thus causing important yield losses in Normandy, France. Race-specific resistance against V. dahliae race 1 is determined by tomato Ve1, a leucine-rich repeat (LRR) receptor-like protein (RLP). Furthermore, homologous proteins have been found in various plant families. Herein, four homologs of tomato Ve1 were identified in the flax proteome database. The selected proteins were named LuVe11, LuVe12, LuVe13 and LuVe14 and were compared to other Ve1. Sequence alignments and phylogenic analysis were conducted and detected a high similarity in the content of amino acids and that of the Verticillium spp. race 1 resistance protein cluster. Annotations on the primary structure of these homologs reveal several features of tomato Ve1, including numerous copies of a 28 amino acids consensus motif [XXIXNLXXLXXLXLSXNXLSGXIP] in the LRR domain. An in vivo assay was performed using V. dahliae race 1 on susceptible and tolerant fiber flax cultivars. Despite the presence of homologous genes and the stronger expression of LuVe11 compared to controls, both cultivars exhibited symptoms and the pathogen was observed within the stem. Amino acid substitutions within the segments of the LRR domain could likely affect the ligand binding and thus the race-specific resistance. The results of this study indicate that complex approaches including pathogenicity tests, microscopic observations and gene expression should be implemented for assessing race-specific resistance mediated by Ve1 within the large collection of flax genotypes.

Keywords