Bulletin of the National Research Centre (Dec 2019)
Trials of reuse the Pb-containing wastes of crystal glass factories into useable new materials
Abstract
Abstract Background Lead-containing glass wastes from crystal factories have environmentally harmful problems. In the current work, the reduction and the feasibility of recycling of such waste through the preparation of glass in the ternary system containing wastes—silica'sand—soda-lime-silica glass, were investigated in different ceramic or composite materials. Results The ceramic samples are characterized by crystallization of kilchoanite (Ca3Si2O7) in addition to mixed Ce oxides [i.e., CeO2 and Ce2O3] in Pb-containing waste alone. In the other ceramic samples containing the three constituents, low quartz, tridymite, cristobalite, and wollastonite were developed. The microstructures of the later ceramics show scattered needles and interlocked ones spread in glassy matrix. The density, porosity, and compression strength values of ceramic samples were between 0.392 and 2.743 g/cc, 9.33% and 30.19%, and between 10.26 and 83.25 KN/mm2, respectively. However, sintered Pb glass-containing wastes have the highest porosity, lowest density, and compression strength. The leachability of Pb in ceramic samples, according to the standard method by ASTM-D3987 (American Standard for Testing Materials, 2012), was between 0.025 and 0.007 mg/L which is lower than the legal value (5 mg/L). Conclusion The present product can be used in insulation, cladding brick, and as refractory (up to 900 °C) for the samples containing the three constituents.
Keywords