Frontiers in Plant Science (Nov 2024)

Explainable light-weight deep learning pipeline for improved drought stress identification

  • Aswini Kumar Patra,
  • Aswini Kumar Patra,
  • Lingaraj Sahoo

DOI
https://doi.org/10.3389/fpls.2024.1476130
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionEarly identification of drought stress in crops is vital for implementing effective mitigation measures and reducing yield loss. Non-invasive imaging techniques hold immense potential by capturing subtle physiological changes in plants under water deficit. Sensor-based imaging data serves as a rich source of information for machine learning and deep learning algorithms, facilitating further analysis that aims to identify drought stress. While these approaches yield favorable results, real-time field applications require algorithms specifically designed for the complexities of natural agricultural conditions.MethodsOur work proposes a novel deep learning framework for classifying drought stress in potato crops captured by unmanned aerial vehicles (UAV) in natural settings. The novelty lies in the synergistic combination of a pre-trained network with carefully designed custom layers. This architecture leverages the pre-trained network’s feature extraction capabilities while the custom layers enable targeted dimensionality reduction and enhanced regularization, ultimately leading to improved performance. A key innovation of our work is the integration of gradient-based visualization inspired by Gradient-Class Activation Mapping (Grad-CAM), an explainability technique. This visualization approach sheds light on the internal workings of the deep learning model, often regarded as a ”black box”. By revealing the model’s focus areas within the images, it enhances interpretability and fosters trust in the model’s decision-making process.Results and discussionOur proposed framework achieves superior performance, particularly with the DenseNet121 pre-trained network, reaching a precision of 97% to identify the stressed class with an overall accuracy of 91%. Comparative analysis of existing state-of-the-art object detection algorithms reveals the superiority of our approach in achieving higher precision and accuracy. Thus, our explainable deep learning framework offers a powerful approach to drought stress identification with high accuracy and actionable insights.

Keywords