EPJ Techniques and Instrumentation (Nov 2021)
Thrust measurement and thrust balance development at DLR’s electric propulsion test facility
Abstract
Abstract Electric space propulsion thrusters only produce low thrust forces. For the fulfillment of a space mission this implies long thruster runtimes, and this entails long qualification times on ground. For such long testing times, a ground facility requires a vacuum chamber and a powerful pumping system which can guarantee high vacuum over extended times and under thruster gas load. DLR’s STG-ET is such a ground test facility. It has a high pumping capability for the noble gases typically used as propellants. One basic diagnostic tool is a thrust measurement device, among various other diagnostic systems required for electric propulsion testing, e.g. beam diagnostics. At DLR we operate a thrust balance developed by the company AST with a thrust measurement range of 250 mN and capable of thruster weights up to 40 kg. Adversely, it is a bulky and heavy device and all upgrades and qualification work needs to be done in a large vacuum chamber. In order to have a smaller device at hand a second thrust stand is under development at DLR. The idea is to have a light and compact balance that could also be placed in one of the smaller DLR vacuum chambers. Furthermore, the calibration is more robust and the whole device is equipped with a watercooled housing. First tests are promising and showed a resolution well below 1 mN. In this paper we give background information about the chamber, describe the basics of thrust measurement and the development of a new balance.
Keywords