Water Science and Engineering (Dec 2020)

Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran

  • Zahra Noorisameleh,
  • Shahriar Khaledi,
  • Alireza Shakiba,
  • Parviz Zeaiean Firouzabadi,
  • William A. Gough,
  • M. Monirul Qader Mirza

Journal volume & issue
Vol. 13, no. 4
pp. 265 – 274

Abstract

Read online

Rivers in arid and semi-arid regions are threatened by droughts and climate change. This study focused on a comparative evaluation of the impacts of climate change and droughts on the vulnerability of river flows in three basins with diverse climates in Iran. The standardized precipitation-evapotranspiration index (SPEI) and precipitation effectiveness variables (PEVs) extracted from the conjunctive precipitation effectiveness index (CPEI) were used to analyze the drought severity. To investigate hydrological droughts in the basins, the normalized difference water index (NDWI) and the streamflow drought index (SDI) were calculated and compared. The effects of droughts were assessed under various representative concentration pathway (RCP) scenarios. Changes in the number of wet days and precipitation depth restricted hydrological droughts, whereas an increasing number of dry days amplified their severity. The projected increases in dry days and precipitation over short durations throughout a year under future climate scenarios would produce changes in drought and flood periods and ultimately impact the frequency and severity of hydrological droughts. Under RCP 4.5, an increase in the frequencies of moderate and severe meteorological/hydrological droughts would further affect the Central Desert Basin. Under RCPs 2.6 and 8.5, the frequencies of severe and extreme droughts would increase, but the drought area would be smaller than that under RCP 4.5, demonstrating less severe drought conditions. Due to the shallow depths of most rivers, SDI was found to be more feasible than NDWI in detecting hydrological droughts.

Keywords