Acta Crystallographica Section E: Crystallographic Communications (Jun 2019)

Zn and Ni complexes of pyridine-2,6-dicarboxylates: crystal field stabilization matters!

  • Marius Kremer,
  • Ulli Englert

DOI
https://doi.org/10.1107/S2056989019007461
Journal volume & issue
Vol. 75, no. 6
pp. 903 – 911

Abstract

Read online

Six reaction products of ZnII and NiII with pyridine-2,6-dicarboxylic acid (H2Lig1), 4-chloropyridine-2,6-dicarboxylic acid (H2Lig2) and 4-hydroxypyridine-2,6-dicarboxylic acid (H2Lig3) are used to pinpoint the structural consequences of crystal field stabilization by an incomplete d shell. The pseudo-octahedral ZnII coordination sphere in bis(6-carboxypicolinato)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O or [Zn(HLig1)2]·3H2O, (1), is significantly less regular than that about NiII in the isostructural compound bis(6-carboxypicolinato)nickel(II) trihydrate, [Ni(C7H4NO4)2]·3H2O or [Ni(HLig1)2]·3H2O, (2). The ZnII complexes poly[(4-chloropyridine-2,6-dicarboxylato)zinc(II)], [Zn(C7H2ClNO4)]n or [Zn(Lig2)]n, (3), and poly[[(4-hydroxypyridine-2,6-dicarboxylato)zinc(II)] monohydrate], {[Zn(C7H3NO5)]·H2O}n or {[Zn(Lig3)]·H2O}n, (4), represent two-dimensional coordination polymers with chelating and bridging pyridine-2,6-dicarboxylate ligands in which the coordination polyhedra about the central cations cannot be associated with any regular shape; their coordination environments range between trigonal–bipyramidal and square-pyramidal geometries. In contrast, the corresponding adducts of the diprotonated ligands to NiII, namely triaqua(4-chloropyridine-2,6-dicarboxylato)nickel(II), [Ni(C7H2ClNO4)(H2O)3] or [NiLig2(OH2)3)], (5), and triaqua(4-hydroxypyridine-2,6-dicarboxylato)nickel(II) 1.7-hydrate, [Ni(C7H3NO5)(H2O)3]·1.7H2O or [NiLig3(OH2)3)]·1.7H2O, (6), feature rather regular octahedral coordination spheres about the transition-metal cations, thus precluding the formation of analogous extended structures.

Keywords