Ophthalmology Science (Dec 2023)

Predicting Glaucoma Progression to Surgery with Artificial Intelligence Survival Models

  • Shiqi Tao, MS,
  • Rohith Ravindranath, MS,
  • Sophia Y. Wang, MD, MS

Journal volume & issue
Vol. 3, no. 4
p. 100336

Abstract

Read online

Purpose: Prior artificial intelligence (AI) models for predicting glaucoma progression have used traditional classifiers that do not consider the longitudinal nature of patients’ follow-up. In this study, we developed survival-based AI models for predicting glaucoma patients' progression to surgery, comparing performance of regression-, tree-, and deep learning–based approaches. Design: Retrospective observational study. Subjects: Patients with glaucoma seen at a single academic center from 2008 to 2020 identified from electronic health records (EHRs). Methods: From the EHRs, we identified 361 baseline features, including demographics, eye examinations, diagnoses, and medications. We trained AI survival models to predict patients’ progression to glaucoma surgery using the following: (1) a penalized Cox proportional hazards (CPH) model with principal component analysis (PCA); (2) random survival forests (RSFs); (3) gradient-boosting survival (GBS); and (4) a deep learning model (DeepSurv). The concordance index (C-index) and mean cumulative/dynamic area under the curve (mean AUC) were used to evaluate model performance on a held-out test set. Explainability was investigated using Shapley values for feature importance and visualization of model-predicted cumulative hazard curves for patients with different treatment trajectories. Main Outcome Measures: Progression to glaucoma surgery. Results: Of the 4512 patients with glaucoma, 748 underwent glaucoma surgery, with a median follow-up of 1038 days. The DeepSurv model performed best overall (C-index, 0.775; mean AUC, 0.802) among the models studied in this article (CPH with PCA: C-index, 0.745; mean AUC, 0.780; RSF: C-index, 0.766; mean AUC, 0.804; GBS: C-index, 0.764; mean AUC, 0.791). Predicted cumulative hazard curves demonstrate how models could distinguish between patient who underwent early surgery and patients who underwent surgery after > 3000 days of follow-up or no surgery. Conclusions: Artificial intelligence survival models can predict progression to glaucoma surgery using structured data from EHRs. Tree-based and deep learning-based models performed better at predicting glaucoma progression to surgery than the CPH regression model, potentially because of their better suitability for high-dimensional data sets. Future work predicting ophthalmic outcomes should consider using tree-based and deep learning-based survival AI models. Additional research is needed to develop and evaluate more sophisticated deep learning survival models that can incorporate clinical notes or imaging. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Keywords