Heliyon (Jul 2024)

Time association study on a sub-acute mouse model of Parkinson’s disease

  • Jinfeng Ren,
  • Tongzheng Liu,
  • Luyan You,
  • Minghui Hu,
  • Jianping Zhu,
  • Xinyu Wang,
  • Hao Zhang,
  • Jiayu Zhang,
  • Zifa Li,
  • Sheng Wei,
  • Xiwen Geng

Journal volume & issue
Vol. 10, no. 13
p. e34082

Abstract

Read online

Parkinson's disease (PD) is a severe neurodegenerative disease that disturbs human health. In the laboratory researches about PD, the mice model induced by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was widely used. However, there has been controversy about the model effectiveness to simulate PD symptoms and pathology, and the time-varying development of behavioral and pathological characteristic after MPTP treatment remains unclear. In order to solve these problems, we designed a series of experiments to evaluate this PD model at different time points. We constructed the subacute PD mouse model by intraperitoneal injection of MPTP for 5 consecutive days. The rotarod test, open field test and the immunohistochemical staining of tyrosine hydroxylase were conducted at −5, 1, 5, 7, 14, 21 and 28 days after the last injection of MPTP. The results showed that 5 days after the last MPTP administration, typical motor disorders with significant balance function damage in rotarod test began to appear and remained stable throughout the entire experiment. Simultaneously, we also observed the loss of tyrosine hydroxylase (TH) positive cells in the substantia nigra compacta and reduction of TH content in the striatum but this pathological change in the substantia nigra compacta reversed 21 days after injection. Besides, the spontaneous movement of mice in open field test remained unchanged by MPTP. This research indicated the time-dependence of MPTP neurotoxicity that impair the motor function and histological features and confirmed the symptom occurrence time after MPTP injection, which provides a reference for the future research about MPTP-induced PD.

Keywords