Nature Communications (Jan 2025)
Oceanic evasion fuels Arctic summertime rebound of atmospheric mercury and drives transport to Arctic terrestrial ecosystems
Abstract
Abstract Mercury (Hg) contamination poses a persistent threat to the remote Arctic ecosystem, yet the mechanisms driving the pronounced summer rebound of atmospheric gaseous elemental Hg (Hg0) and its subsequent fate remain unclear due to limitations in large-scale seasonal studies. Here, we use an integrated atmosphere–land–sea-ice–ocean model to simulate Hg cycling in the Arctic comprehensively. Our results indicate that oceanic evasion is the dominant source (~80%) of the summer Hg0 rebound, particularly driven by seawater Hg0 release facilitated by seasonal ice melt (~42%), with further contributions from anthropogenic deposition and terrestrial re-emissions. Enhanced Hg0 dry deposition across the Arctic coastal regions, especially in the Arctic tundra, during the summer rebound highlights the potential transport of Hg from the pristine Arctic Ocean to Arctic terrestrial ecosystems. Arctic warming, with a transition from multi-year to first-year ice and tundra greening, is expected to amplify oceanic Hg evasion and intensify Hg0 uptake by the Arctic tundra due to increased vegetation growth, underlining the urgent need for continued research to evaluate Hg mitigation strategies effectively in the context of a changing Arctic.