Agronomy (Aug 2024)

Effects of Different Living Grass Mulching on Soil Carbon and Nitrogen in an Apple Orchard on Loess Plateau

  • Qian Xiang,
  • Tao Ma,
  • Xianzhi Wang,
  • Qian Yang,
  • Long Lv,
  • Ruobing Wang,
  • Jiaxuan Li,
  • Jingyong Ma

DOI
https://doi.org/10.3390/agronomy14091917
Journal volume & issue
Vol. 14, no. 9
p. 1917

Abstract

Read online

Living grass mulching (LMG) is a modern, environmentally friendly, practical, and efficient production management technology that improves the ecological environment, quality, and efficiency of the orchard. However, in arid and semi-arid areas, the effects of different grass species mulching on soil carbon composition, carbon pool stability, and nitrogen content are still unclear. Therefore, in order to explore the impact of different LMG on soil carbon, nitrogen, and its component content, as well as the related soil carbon pool management index in an apple orchard located in the semi-arid region of the Loess Plateau, a control experiment was conducted. The experiment involved different grass species cover treatments on an 11-year-old semi-dwarf Qinguan apple orchard from 2019 to 2022. Soil carbon and nitrogen content were measured under each treatment. The results indicated that the application of LMG treatment and depth of the soil had a significant impact on the soil organic carbon (SOC), particulate organic carbon (POC), inactive organic carbon (NAOC), total nitrogen (TN), and carbon-to-nitrogen ratio (C/N). Planting Vulpia myuros mulches significantly enhanced 39.6% surface soil organic carbon, 61.7% surface particulate organic carbon, 20.3% surface dissolved organic carbon (DOC), 75.8% surface inactive organic carbon, and 20.6% surface soil total nitrogen compared to clean tillage. Mulching treatment with the planting of Vulpia myuros boosted surface soil organic carbon and decreased soil carbon pool activity (CPA) and carbon pool activity index (CPAI), ultimately improving the stability of the soil carbon pool. The findings will have a beneficial impact on improving soil quality, carbon sequestration, and emission reduction in arid and semi-arid regions.

Keywords