Energies (Jun 2024)

Hybrid Energy Storage System Dispatch Optimization for Cost and Environmental Impact Analysis

  • Miguel Preto,
  • Alexandre Lucas,
  • Pedro Benedicto

DOI
https://doi.org/10.3390/en17122987
Journal volume & issue
Vol. 17, no. 12
p. 2987

Abstract

Read online

Incorporating renewables in the power grid presents challenges for stability, reliability, and operational efficiency. Integrating energy storage systems (ESSs) offers a solution by managing unpredictable loads, enhancing reliability, and serving the grid. Hybrid storage solutions have gained attention for specific applications, suggesting higher performance in some respects. This article compares the performance of hybrid energy storage systems (HESSs) to a single battery, evaluating their energy supply cost and environmental impact through optimization problems. The optimization model is based on a MILP incorporating the energy and degradation terms. It generates an optimized dispatch, minimizing cost or environmental impact of supplying energy to a generic load. Seven technologies are assessed, with an example applied to an industrial site combining a vanadium redox flow battery (VRFB) and lithium battery considering the demand of a local load (building). The results indicate that efficiency and degradation curves have the highest impact in the final costs and environmental functions on the various storage technologies assessed. For the simulations of the example case, a single system only outperforms the hybrid system in cases where lithium efficiency is higher than approximately 87% and vanadium is lower approximately 82%.

Keywords