BMC Biology (Nov 2021)

The transposable element-rich genome of the cereal pest Sitophilus oryzae

  • Nicolas Parisot,
  • Carlos Vargas-Chávez,
  • Clément Goubert,
  • Patrice Baa-Puyoulet,
  • Séverine Balmand,
  • Louis Beranger,
  • Caroline Blanc,
  • Aymeric Bonnamour,
  • Matthieu Boulesteix,
  • Nelly Burlet,
  • Federica Calevro,
  • Patrick Callaerts,
  • Théo Chancy,
  • Hubert Charles,
  • Stefano Colella,
  • André Da Silva Barbosa,
  • Elisa Dell’Aglio,
  • Alex Di Genova,
  • Gérard Febvay,
  • Toni Gabaldón,
  • Mariana Galvão Ferrarini,
  • Alexandra Gerber,
  • Benjamin Gillet,
  • Robert Hubley,
  • Sandrine Hughes,
  • Emmanuelle Jacquin-Joly,
  • Justin Maire,
  • Marina Marcet-Houben,
  • Florent Masson,
  • Camille Meslin,
  • Nicolas Montagné,
  • Andrés Moya,
  • Ana Tereza Ribeiro de Vasconcelos,
  • Gautier Richard,
  • Jeb Rosen,
  • Marie-France Sagot,
  • Arian F. A. Smit,
  • Jessica M. Storer,
  • Carole Vincent-Monegat,
  • Agnès Vallier,
  • Aurélien Vigneron,
  • Anna Zaidman-Rémy,
  • Waël Zamoum,
  • Cristina Vieira,
  • Rita Rebollo,
  • Amparo Latorre,
  • Abdelaziz Heddi

DOI
https://doi.org/10.1186/s12915-021-01158-2
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 28

Abstract

Read online

Abstract Background The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. Results We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. Conclusions Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.

Keywords