Polymers (Sep 2023)

Mesoporous Titanium Dioxide Nanoparticles—Poly(N-isopropylacrylamide) Hydrogel Prepared by Electron Beam Irradiation Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells

  • Huangqin Chen,
  • Yuzhu Hu,
  • Chizhou Wu,
  • Kun Liu,
  • Rui Feng,
  • Mingzhe Yang,
  • Mengyao Zhao,
  • Bin Huang,
  • Yuesheng Li

DOI
https://doi.org/10.3390/polym15183659
Journal volume & issue
Vol. 15, no. 18
p. 3659

Abstract

Read online

An urgently needed approach for the treatment of oral squamous cell carcinoma (OSCC) is the development of novel drug delivery systems that offer targeted specificity and minimal toxic side effects. In this study, we developed an injectable and temperature-sensitive composite hydrogel by combining mesoporous titanium dioxide nanoparticles (MTNs) with Poly(N-isopropylacrylamide) (PNIPAAM) hydrogel to serve as carriers for the model drug Astragalus polysaccharide (APS) using electron beam irradiation. The characteristics of MTNs, including specific surface area and pore size distribution, were analyzed, and the characteristics of MTNs-APS@Hyaluronic acid (HA), such as microscopic morphology, molecular structure, crystal structure, and loading efficiency, were examined. Additionally, the swelling ratio, gel fraction, and microscopic morphology of the composite hydrogel were observed. The in vitro cumulative release curve was plotted to investigate the sustained release of APS in the composite hydrogels. The effects on the proliferation, migration, and mitochondrial membrane potential of CAL-27 cells were evaluated using MTT assay, scratch test, and JC-1 staining. The results indicated successful preparation of MTNs with a specific surface area of 147.059 m2/g and an average pore diameter of 3.256 nm. The composite hydrogel displayed temperature-sensitive and porous characteristics, allowing for slow release of APS. Furthermore, it effectively suppressed CAL-27 cells proliferation, migration, and induced changes in mitochondrial membrane potential. The addition of autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) attenuated the migration inhibition (p < 0.05).

Keywords