Biomimetics (Oct 2023)
Whole-Body Dynamics-Based Aerial Fall Trajectory Optimization and Landing Control for Humanoid Robot
Abstract
When humanoid robots work in human environments, falls are inevitable due to the complexity of such environments. Current research on humanoid robot falls has mainly focused on falls on the ground, with little research on humanoid robots falling from the air. In this paper, we employ an extended state variable formulation that directly maps from the high-level motion strategy space to the full-body joint space to optimize the falling trajectory in order to protect the robot when falling from the air. In order to mitigate the impact force generated by the robot’s fall, during the aerial phase, we employ simple proportion differentiation (PD) control. In the landing phase, we optimize the optimal contact force at the contact point using the centroidal dynamics model. Based on the contact force, the changes to the end-effector positions are solved using a dual spring–damper model. In the simulation experiments, we conduct three comparative experiments, and the simulation results demonstrate that the robot can safely fall 1.5 m from the ground at a pitch angle of 45°. Finally, we experimentally validate the methods on an actual robot by performing a side-fall experiment. The experimental results show that the proposed trajectory optimization and motion control methods can provide excellent shock absorption for the impact generated when a robot falls.
Keywords