Journal of Lipid Research (Jul 2006)

Analysis of intact phosphoinositides in biological samples

  • Trevor R. Pettitt,
  • Stephen K. Dove,
  • Anneke Lubben,
  • Simon D.J. Calaminus,
  • Michael J.O. Wakelam

Journal volume & issue
Vol. 47, no. 7
pp. 1588 – 1596

Abstract

Read online

It is now apparent that each of the known, naturally occurring polyphosphoinositides, the phosphatidylinositol monophosphates (PtdIns3P, PtdIns4P, PtdIns5P), phosphatidylinositol bisphosphates [PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2], and phosphatidylinositol trisphosphate [PtdIns(3,4,5)P3], have distinct roles in regulating many cellular events, including intracellular signaling, migration, and vesicular trafficking. Traditional identification techniques require [32P]inorganic phosphate or [3H]inositol radiolabeling, acidified lipid extraction, deacylation, and ion-exchange head group separation, which are time-consuming and not suitable for samples in which radiolabeling is impractical, thus greatly restricting the study of these lipids in many physiologically relevant systems. Thus, we have developed a novel, high-efficiency, buffered citrate extraction methodology to minimize acid-induced phosphoinositide degradation, together with a high-sensitivity liquid chromatography-mass spectrometry (LC-MS) protocol using an acetonitrile-chloroform-methanol-water-ethylamine gradient with a microbore silica column that enables the identification and quantification of all phosphoinositides in a sample. The liquid chromatograph is sufficient to resolve PtdInsP3 and PtdInsP2 regioisomers; however, the PtdInsP regioisomers require a combination of LC and diagnostic fragmentation to MS3. Data are presented using this approach for the analysis of phosphoinositides in human platelet and yeast samples.

Keywords