Archives of Metallurgy and Materials (Sep 2021)

Enhanced Energetic Performance of Polyvinylidene Fluoride-Coated Zirconium Particle

  • Won Young Heo,
  • Sung Hwa Bae,
  • Injoon Son

DOI
https://doi.org/10.24425/amm.2021.136369
Journal volume & issue
Vol. vol. 66, no. No 3
pp. 725 – 728

Abstract

Read online

In this study, energetic behaviors of polyvinylidene fluoride (PVDF)-coated zirconium (Zr) powders were investigated using thermogravimetric analyzer-differential scanning calorimetry (TGA-DSC). PVDF-coated Zr powder had 1.5 times higher heat flow than ZrO2-passivated Zr powder. PVDF-coated Zr powder had a Zr-F compound formed on its surface by its strong chemical bond. This compound acted as an oxidation-protecting layer, providing an efficient combustion path to inner pure Zr particle while thermal oxidation was progressing at the same time. PVDF coating layers also made thermal reaction start at a lower temperature than ZrO2-passivated Zr powder. It was obtained that the surface PVDF coating layer evaporated at approximately 673 K, but the surface oxide layer fully reacted at approximately 923 K by DSC analysis. Hence, Zr powders showed enhanced energetic properties by the PVDF-coated process.

Keywords