Technologies (May 2024)
Converging Artificial Intelligence and Quantum Technologies: Accelerated Growth Effects in Technological Evolution
Abstract
One of the fundamental problems in the field of technological studies is to clarify the drivers and dynamics of technological evolution for sustaining industrial and economic change. This study confronts the problem by analyzing the converging technologies to explain effects on the evolutionary dynamics over time. This paper focuses on technological interaction between artificial intelligence and quantum technologies using a technometric model of technological evolution based on scientific and technological information (publications and patents). Findings show that quantum technology has a growth rate of 1.07, artificial intelligence technology has a rate of growth of 1.37, whereas the technological interaction of converging quantum and artificial intelligence technologies has an accelerated rate of growth of 1.58, higher than trends of these technologies taken individually. These findings suggest that technological interaction is one of the fundamental determinants in the rapid evolution of path-breaking technologies and disruptive innovations. The deductive implications of results about the effects of converging technologies are: (a) accelerated evolutionary growth; (b) a disproportionate (allometric) growth of patents driven by publications supporting a fast technological evolution. Our results support policy and managerial implications for the decision making of policymakers, technology analysts, and R&D managers that can direct R&D investments towards fruitful inter-relationships between radical technologies to foster scientific and technological change with positive societal and economic impcats.
Keywords