Agriculture (Feb 2023)

Development of a General Prediction Model of Moisture Content in Maize Seeds Based on LW-NIR Hyperspectral Imaging

  • Zheli Wang,
  • Jiangbo Li,
  • Chi Zhang,
  • Shuxiang Fan

DOI
https://doi.org/10.3390/agriculture13020359
Journal volume & issue
Vol. 13, no. 2
p. 359

Abstract

Read online

Moisture content (MC) is one of the important indexes to evaluate maize seed quality. Its accurate prediction is very challenging. In this study, the long-wave near-infrared hyperspectral imaging (LW-NIR-HSI) system was used, and the embryo side (S1) and endosperm side (S2) spectra of each maize seed were extracted, as well as the average spectrum (S3) of both being calculated. The partial least square regression (PLSR) and least-squares support vector machine (LS-SVM) models were established. The uninformative variable elimination (UVE) and successive projections algorithm (SPA) were employed to reduce the complexity of the models. The results indicated that the S3-UVE-SPA-PLSR and S3-UVE-SPA-LS-SVM models achieved the best prediction accuracy with an RMSEP of 1.22% and 1.20%, respectively. Furthermore, the combination (S1+S2) of S1 and S2 was also used to establish the prediction models to obtain a general model. The results indicated that the S1+S2-UVE-SPA-LS-SVM model was more valuable with Rpre of 0.91 and RMSEP of 1.32% for MC prediction. This model can decrease the influence of different input spectra (i.e., S1 or S2) on prediction performance. The overall study indicated that LW-HSI technology combined with the general model could realize the non-destructive and stable prediction of MC in maize seeds.

Keywords