Big Data & Society (Jul 2021)
Co-design and ethical artificial intelligence for health: An agenda for critical research and practice
Abstract
Applications of artificial intelligence/machine learning (AI/ML) in health care are dynamic and rapidly growing. One strategy for anticipating and addressing ethical challenges related to AI/ML for health care is patient and public involvement in the design of those technologies – often referred to as ‘co-design’. Co-design has a diverse intellectual and practical history, however, and has been conceptualized in many different ways. Moreover, AI/ML introduces challenges to co-design that are often underappreciated. Informed by perspectives from critical data studies and critical digital health studies, we review the research literature on involvement in health care, and involvement in design, and examine the extent to which co-design as commonly conceptualized is capable of addressing the range of normative issues raised by AI/ML for health care. We suggest that AI/ML technologies have amplified and modified existing challenges related to patient and public involvement, and created entirely new challenges. We outline three pitfalls associated with co-design for ethical AI/ML for health care and conclude with suggestions for addressing these practical and conceptual challenges.