Metals (Aug 2020)

Structural Defects in TiNi-Based Alloys after Warm ECAP

  • Aleksandr Lotkov,
  • Anatoly Baturin,
  • Vladimir Kopylov,
  • Victor Grishkov,
  • Roman Laptev

DOI
https://doi.org/10.3390/met10091154
Journal volume & issue
Vol. 10, no. 9
p. 1154

Abstract

Read online

The microstructure, martensitic transformations and crystal structure defects in the Ti50Ni47.3Fe2.7 (at%) alloy after equal-channel angular pressing (ECAP, angle 90°, route BC, 1–3 passes at T = 723 K) have been investigated. A homogeneous submicrocrystalline (SMC) structure (grains/subgrains about 300 nm) is observed after 3 ECAP passes. Crystal structure defects in the Ti49.4Ni50.6 (at%) alloy (8 ECAP passes, angle 120°, BC route, T = 723 K, grains/subgrains about 300 nm) and Ti50Ni47.3Fe2.7 (at%) alloy with SMC B2 structures after ECAP were studied by positron lifetime spectroscopy at the room temperature. The single component with the positron lifetime τ1 = 132 ps and τ1 = 140 ps were observed for positron lifetime spectra (PLS) obtained from ternary and binary, correspondingly, annealed alloys with coarse-grained structures. This τ1 values correspond to the lifetime of delocalized positrons in defect-free B2 phase. The two component PLS were found for all samples exposed by ECAP. The component with τ2 = 160 ps (annihilation of positrons trapped by dislocations) is observed for all samples after 1–8 ECAP passes. The component with τ3 = 305 ps (annihilation of positrons trapped by vacancy nanoclusters) was detected only after the first ECAP pass. The component with τ3 = 200 ps (annihilation of positrons trapped by vacancies in the Ti sublattice of B2 structure) is observed for all samples after 3–8 ECAP passes.

Keywords