Acta Pharmaceutica Sinica B (Jun 2020)

20(S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis

  • Zhihua Wang,
  • Wenbo Wu,
  • Xiangchen Guan,
  • Shuang Guo,
  • Chaowen Li,
  • Ruixue Niu,
  • Jie Gao,
  • Min Jiang,
  • Liping Bai,
  • Elaine Laihan Leung,
  • Yuanyuan Hou,
  • Zhihong Jiang,
  • Gang Bai

Journal volume & issue
Vol. 10, no. 6
pp. 1020 – 1035

Abstract

Read online

Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA–proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and “Warburg effect”. The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions, which further induced a series of omics changes.

Keywords