Algorithms (Jul 2020)

Polyhedral DC Decomposition and DCA Optimization of Piecewise Linear Functions

  • Andreas Griewank,
  • Andrea Walther

DOI
https://doi.org/10.3390/a13070166
Journal volume & issue
Vol. 13, no. 7
p. 166

Abstract

Read online

For piecewise linear functions f : R n ↦ R we show how their abs-linear representation can be extended to yield simultaneously their decomposition into a convex f ˇ and a concave part f ^ , including a pair of generalized gradients g ˇ ∈ R n ∋ g ^ . The latter satisfy strict chain rules and can be computed in the reverse mode of algorithmic differentiation, at a small multiple of the cost of evaluating f itself. It is shown how f ˇ and f ^ can be expressed as a single maximum and a single minimum of affine functions, respectively. The two subgradients g ˇ and − g ^ are then used to drive DCA algorithms, where the (convex) inner problem can be solved in finitely many steps, e.g., by a Simplex variant or the true steepest descent method. Using a reflection technique to update the gradients of the concave part, one can ensure finite convergence to a local minimizer of f, provided the Linear Independence Kink Qualification holds. For piecewise smooth objectives the approach can be used as an inner method for successive piecewise linearization.

Keywords