Alexandria Engineering Journal (Sep 2024)

Melting heat transfer of a quadratic stratified Jeffrey nanofluid flow with inclined magnetic field and thermophoresis

  • Mamoona Muzammal,
  • Muhammad Farooq,
  • Hashim,
  • Sana Ben Moussa,
  • Samia NASR

Journal volume & issue
Vol. 103
pp. 158 – 168

Abstract

Read online

Recently, researchers are facing great challenges to form the homogeneous solutions of various liquids at biomedical and industrial levels. Such homogeneous solutions can be controlled through stratification phenomenon directly which is ignored by the researchers in the existing literature specifically quadratic stratification and melting heat mechanism which is valid only for higher temperature processes. Thus, to form the homogeneous and stable liquid solutions for various industrial processes, we investigate the melting heat phenomenon in quadratic stratified Jeffery Nano fluid flow deformed due to linearly stretching sheet along with stagnation point. Inclined constant magnetic field is implemented on the fluid through an arbitrary angel. Characteristics of heat and transportations are disclosed through viscous dissipation, Brownian motion and thermphoresis. Temperature and concentration of the surrounding fluids are assumed higher than the stretching surface. The resultant governing equations are reduced to ordinary differential equations through proper transformations. Convergent analytical series solutions are computed via homotopic approach. Impact of various emerging parameters on temperature, velocity and concentration fields are illustrated and discussed comprehensively. Sherwood and Nusselt numbers and drag force are scrutinized mathematically, physically and graphically. It is analyzed from the study that (i) dominant melting reduces the temperature field (ii) higher thermal and solutal stratification decay the temperature and concentration fields respectively (iii) higher thermophoresis enhances the temperature field. Further, it is concluded that stable and homogeneous solutions may be made by increasing melting and reducing stratification phenomena. This study will help us to provide actual amount of heat for heating processes in industries and biomedicine which is the basic requirement for excellent quality of products.

Keywords