The Astrophysical Journal Letters (Jan 2023)

The NANOGrav 12.5 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

  • Zaven Arzoumanian,
  • Paul T. Baker,
  • Laura Blecha,
  • Harsha Blumer,
  • Adam Brazier,
  • Paul R. Brook,
  • Sarah Burke-Spolaor,
  • Bence Bécsy,
  • J. Andrew Casey-Clyde,
  • Maria Charisi,
  • Shami Chatterjee,
  • Siyuan Chen,
  • James M. Cordes,
  • Neil J. Cornish,
  • Fronefield Crawford,
  • H. Thankful Cromartie,
  • Megan E. DeCesar,
  • Paul B. Demorest,
  • Timothy Dolch,
  • Brendan Drachler,
  • Justin A. Ellis,
  • E. C. Ferrara,
  • William Fiore,
  • Emmanuel Fonseca,
  • Gabriel E. Freedman,
  • Nathan Garver-Daniels,
  • Peter A. Gentile,
  • Joseph Glaser,
  • Deborah C. Good,
  • Kayhan Gültekin,
  • Jeffrey S. Hazboun,
  • Ross J. Jennings,
  • Aaron D. Johnson,
  • Megan L. Jones,
  • Andrew R. Kaiser,
  • David L. Kaplan,
  • Luke Zoltan Kelley,
  • Joey Shapiro Key,
  • Nima Laal,
  • Michael T. Lam,
  • William G Lamb,
  • T. Joseph W. Lazio,
  • Natalia Lewandowska,
  • Tingting Liu,
  • Duncan R. Lorimer,
  • Jing Luo,
  • Ryan S. Lynch,
  • Dustin R. Madison,
  • Alexander McEwen,
  • Maura A. McLaughlin,
  • Chiara M. F. Mingarelli,
  • Cherry Ng,
  • David J. Nice,
  • Stella Koch Ocker,
  • Ken D. Olum,
  • Timothy T. Pennucci,
  • Nihan S. Pol,
  • Scott M. Ransom,
  • Paul S. Ray,
  • Joseph D. Romano,
  • Brent J. Shapiro-Albert,
  • Xavier Siemens,
  • Joseph Simon,
  • Magdalena Siwek,
  • Renée Spiewak,
  • Ingrid H. Stairs,
  • Daniel R. Stinebring,
  • Kevin Stovall,
  • Joseph K. Swiggum,
  • Jessica Sydnor,
  • Stephen R. Taylor,
  • Jacob E. Turner,
  • Michele Vallisneri,
  • Sarah J. Vigeland,
  • Haley M. Wahl,
  • Gregory Walsh,
  • Caitlin A. Witt,
  • Olivia Young,
  • The NANOGrav Collaboration

DOI
https://doi.org/10.3847/2041-8213/acdbc7
Journal volume & issue
Vol. 951, no. 2
p. L28

Abstract

Read online

Pulsar timing array collaborations, such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), are seeking to detect nanohertz gravitational waves emitted by supermassive black hole binaries formed in the aftermath of galaxy mergers. We have searched for continuous waves from individual circular supermassive black hole binaries using NANOGrav’s recent 12.5 yr data set. We created new methods to accurately model the uncertainties on pulsar distances in our analysis, and we implemented new techniques to account for a common red-noise process in pulsar timing array data sets while searching for deterministic gravitational wave signals, including continuous waves. As we found no evidence for continuous waves in our data, we placed 95% upper limits on the strain amplitude of continuous waves emitted by these sources. At our most sensitive frequency of 7.65 nHz, we placed a sky-averaged limit of h _0 < (6.82 ± 0.35) × 10 ^−15 , and h _0 < (2.66 ± 0.15) × 10 ^−15 in our most sensitive sky location. Finally, we placed a multimessenger limit of ${ \mathcal M }\lt (1.41\pm 0.02)\times {10}^{9}\,{M}_{\odot }$ on the chirp mass of the supermassive black hole binary candidate 3C 66B.

Keywords